Understanding Wine Faults

Melissa Aellen
Cornell Enology Extension Lab, NYSAES Geneva, Cornell University
Goals for today:

- Learn about various wine flaws and their key descriptors

Increasing concentration of volatile X

Detection | Recognition | REJECTION
Sorbate-related flaws

- Potassium sorbate added to prevent re-fermentation through yeast inhibition

- Three potential issues:
 - 30-40% population perceives potassium sorbate
 - Degradation to ethyl sorbate
 - Geranium taint: 2-ethoxyhexa-3,5-diene
Sorbate-related flaws

- **Sorbic Acid**
 - Used as a preservative in sweet wine production
 - Inhibits yeast activity
 - DOES NOT kill yeast

- **Potassium sorbate** most common additive
 - Legal limit: 300 mg/l
 - Sensory threshold: 135 mg/l

While generally effective against *Saccharomyces* yeast strains, sorbic acid is not as effective against film forming yeasts, *Brettanomyces*, *Zygosaccharomyces* and lactic acid bacteria.
Sorbate-related flaws

Geranium Taint

- Lactic acid bacteria (LAB) metabolize sorbic acid
 - 2-ethoxyhexa-3,5-diene
 - Smells like crushed geranium leaves
 - Sensory threshold: 100 ppt
Sorbate-related flaws

Prevention
- Avoid sorbate use (dry wine never needs sorbate)
- Use sorbate with adequate levels of SO$_2$
- Calculate the sorbic acid dose accurately
 - Potassium sorbate contains 74% sorbic acid
 - Single dose
- Don’t use sorbate for storage
 - Add about a day before bottling
- Sterile filter wine (don’t forget bubble point test)

Correction
- Blending may help
Oxidation

- Most common wine flaw
 ...the ultimate fate of all wine?

- Cause:
 - Excessive oxygen exposure
 - aldehyde production
 - Reactions poorly understood

O_2 molecules
Acetaldehyde

- Sensory threshold ≈ 100mg/l
- Causes:
 - Fermentation by-product (relatively small amounts)
 - Oxidation of must and wine
 - Film yeast & other spoilage microorganisms

Image courtesy C. Butzke Purdue University
Oxidation

Prevention
- Use clean fruit - no rot!
 - Botrytized fruit = Laccase enzyme (oxidizing agent)
- Ship fruit under refrigeration
- Maintain proper SO$_2$ levels
 - Fruit in transit
- Processing
- Store wine in full containers
 - No head space or ullage
 - Keep barrels topped
Oxidation

- **Prevention**
 - Minimize air exposure
 - Use proper pump
 - Use inert gas during wine transfers, storage and bottling
 - Check seal on variable capacity tanks
 - Monitor O_2 levels

- **Correction**
 - Wine fining & SO_2 addition may correct minor issues
 - Re-fermentation in larger lot
Oxidation

- **Visual:**
 - Browning
 - Cloudiness

- **Aroma:**
 - Early stages:
 - Reduced fruit
 - Progressively diminished varietal character
 - Late stages:
 - Acetaldehydic (sherry)
 - Nutty

- **Palate:**
 - “Flat” sensation
 - Acidity and bitterness may be enhanced
Excessive SO$_2$

- Second most common wine flaw?

- Cause:
 - Excessive SO$_2$ addition
 - ...especially in low pH wines
 - Recent resurgence—prophylactic treatment with synthetic corks use?
SO$_2$ Management

- A balancing act...
 - Too little = oxidation or microbial infestation
 - Too much = detrimental sensory impact

- Key concepts in SO$_2$ management:
 - Free or bound status
 - SO$_2$ species
Free & Bound SO$_2$

Free + Bound = Total

Useful + Not so Useful = 350 ppm legal
110 ppm desired
SO₂ Species

<table>
<thead>
<tr>
<th>Species</th>
<th>Formula</th>
<th>Activity</th>
<th>Conc. in wine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular</td>
<td>SO₂<sub>aq</sub></td>
<td>Antimicrobial (most effective)</td>
<td>6 - 0.6%</td>
</tr>
<tr>
<td>Bisulfite</td>
<td>HSO₃⁻</td>
<td>Antimicrobial
Anti-browning
Binds acetaldehyde
Binds anthocyanins</td>
<td>94 - 99.4%</td>
</tr>
<tr>
<td>Sulfite</td>
<td>SO₃<sup>2-</sup></td>
<td>Antioxidant</td>
<td>0%</td>
</tr>
</tbody>
</table>
Free & Bound SO$_2$ Species

- **Total SO$_2$**
 - **Molecular SO$_2$**
 - **Free SO$_2$**
 - **Bound SO$_2$**

Bisulfite (HSO$_3^-$)

- **Reversible SO$_2$ bound to other compounds (i.e. sugars, anthocyanins, proteins)**
- **Stable SO$_2$ bound to acetaldehyde**
SO₂ Species and pH

Species (%) vs pH graph showing:
- pH3: 6%
- pH4: 0.6%

The graph illustrates the distribution of SO₂ species across different pH levels in wine, with peaks at pH3 and pH4.

Graph source: http://www.brsquared.org/wine/Articles/SO2/SO2.htm
Free Molecular SO₂

- Free & bound forms exist in equilibrium
 - Sweeter wines = more bound SO₂
 - Lower pH = more free SO₂

- Optimal levels:
 - 0.8 ppm maintained in white wines
 - 0.5 ppm maintained in red wines

- Volatile…
 - Contributes to odor
 - Lost as vapor
Free Molecular SO_2 & pH

![Graph showing the relationship between Free SO2 required (mg/l) and pH for 0.6 mg/l molecular and 0.8 mg/l molecular.](image)
Excessive SO$_2$

- Second most common wine flaw?

Prevention:
- Proper SO$_2$ management

Correction:
- Aeration
- Hydrogen peroxide addition (tricky)
Excessive SO₂

- SO₂ threshold varies widely

- Aroma:
 - Burnt match

- Palate
 - Metallic
 - Bitter

- Trigeminal:
 - Prickling sensation
 - Irritation
 - Generally perceived in back of throat and nose
 - May persist for several minutes in mucus membranes
Volatile Acidity

- Acetic acid + ethyl acetate
 (acetic acid + ethanol = ethyl acetate)

- Legal limits
 - 1.2 g/L (1200 ppm) white wine
 - 1.4 g/L (1400 ppm) red wine

- Threshold is far below legal limit
 - Acetic acid: 400 ppm
 - Ethyl acetate: 60 ppm
 - Varies widely by wine style
Volatile Acidity: The Usual Suspects

- **Gluconobacter oxydans**
 - Occurs naturally on fruit
 - Obligate aerobes

- **Acetobacter aceti**
 - Ubiquitous
 - Obligate aerobes
Volatile Acidity: The Usual Suspects

- **Kloeckera apiculata**
 - apiculate yeast
 - lemon shaped
 - predominant on fruit at harvest

Image source: Vinquiry
Volatile Acidity: The Usual Suspects

- **Pichia membranaefaciens**
 - Film yeast
 - Tolerates ≤ 11% EtOH
 - Also produces isoamyl acetate

Image source: Vinquiry
- Drosophila melanogaster
- Microbial vector
- Releases odiferous enzyme
Volatile Acidity

Prevention

- Use clean fruit - no rot!
 - Ship fruit under refrigeration
- Cellar hygiene - no fruit flies
- Storage
 - Maintain free molecular SO$_2$ at 0.8 ppm
 - Appropriate temperature control
 - Keep containers full (no head space)
 - Use appropriate gas blanketing techniques

Correction

- Removal by reverse osmosis membrane + ion exchange (incomplete removal at best)
Volatile Acidity

- **Acetic Acid & Ethyl acetate**
 - 5:1 ratio
 - Threshold for acetic acid ≈7x higher than ethyl acetate

- **Aroma**
 - Low levels: fruity
 - Higher levels:
 - Acetic acid = vinegar
 - Ethyl acetate = nail polish
 - Wine type dictates dominant perception

- **Palate**
 - Enhanced acidity

- **Trigeminal**
 - Burning or prickling
TCA/Cork Taint

- May affect:
 - individual bottles (cork)
 - entire lots of wine (wood source in winery)
- Detection threshold at 2ppt, rejection at 3ppt

- Cause:
 - 2,4,6-trichloroanisool production by *Penicillium*
 - Other compounds may be implicated
Mechanism of TCA production

Phenol → Chlorophenol → Chloroanisole

Chlorination → Methylation by microorganisms
Cork Taint

Prevention:
- Cork
 - Purchase from a reputable source
 - Test corks for TCA
- Winery
 - Avoid chlorinated cleaners (bleach)
 - Appropriate sanitation

Correction:
- None
TCA/Cork Taint

- **Aroma:**
 - Musty
 - Wet basement
 - Wet newspaper
 - Wet cardboard
 - Mushroom
 - *May vary by wine type*

- **Other moldy notes:**
 - 2,4,6-tribromoanisole
 - *Streptococcus:* sesquiterpene production
 - *Penicillium, Aspergillus:* guaiacol, geosmin
 - Moldy cooperage, moldy grapes
Sulfide Aromas

- **Causes:**
 - Inadequate/unbalanced yeast nutrition
 - Break down of sulfur-containing amino acids
 - Vineyard spray residue
 - Inadequate aeration during fermentation
 - Extended contact with lees, especially gross lees
 - Inappropriate fermentor size/shape
 - High turbidity/juice solids

- **Most common compounds:**
 - Hydrogen Sulfide (H$_2$S)
 - Dimethyl Sulfide
Hydrogen Sulfide (H$_2$S)

Aroma

- <0.9 ppb:
 - Yeasty

- 0.9 - 1.5 ppb and above
 - Rotten egg
 - Sewer gas
 - ‘Reduced’
Dimethyl sulfide

Aroma:

- 20-30 ppb
 - Roundness
 - Fruitiness
 - Complexity

- 30-50 ppb
 - Canned corn
 - Truffle (bottle aging)

- >30 ppb (whites) or 50 ppb (reds)
 - Cooked cabbage
 - Skunk
Other Sulfur Off-Odors

<table>
<thead>
<tr>
<th>Compound</th>
<th>Descriptors</th>
<th>Threshold (ppb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethyl mercaptan</td>
<td>Burnt match, sulfide, earthy</td>
<td>1.1-1.8</td>
</tr>
<tr>
<td>Methyl mercaptan</td>
<td>Rotten cabbage, burnt rubber</td>
<td>1.5</td>
</tr>
<tr>
<td>Diethyl sulfide</td>
<td>Rubber</td>
<td>0.9 – 1.3</td>
</tr>
<tr>
<td>Diethyl disulfide</td>
<td>Garlic, burnt rubber</td>
<td>3.6 – 4.3</td>
</tr>
<tr>
<td>Dimethyl disulfide</td>
<td>Vegetal, cabbage, onion</td>
<td>9.8 – 10.2</td>
</tr>
</tbody>
</table>
Sulfide Aromas

Prevention:
- Appropriate yeast strain selection
- Appropriate nutrient management
- Avoid elemental sulfur applications in the vineyard

Correction:
- Hydrogen Sulfide & Mercaptans
 - Rack off smelly lees
 - Copper sulfate fining (≤6 mg/L; residual ≤0.5 mg/L)
- Dimethyl sulfide
 - Fining with copper sulfate, SO$_2$ and ascorbic acid
Brettanomyces Taint

Metabolic products of Brettanomyces species... or LAB (verify source)
Flaw, or complexity?

Brettanomyces like:
- Residual sugar (pentoses)
- Warm cellar temperature
- High pH
- Low SO₂
- Low alcohol
- New wood barrels

Aroma source:
- 4-ethylphenol threshold: 300-600ng/mL
- 4-ethylguaiacol threshold: 50ng/mL
Brettanomyces

Prevention

- Prevent entry into winery
 - Infected wine, barrels, equipment
- Rigorous cellar sanitation
- Maintain appropriate SO$_2$ levels based on wine pH
- Monitor 4-ethyl phenol
- Frequently taste wine and take notes
- Sterile filtration

Correction

- Market your ‘rustic, earthy’ wines
Brettanomyces

Aroma:
- Barnyard
- Horsey
- Smoky
- Wet dog
- Spicy
- Band-aid®
- Vinegar

Palate:
- As above
- May enhance bitterness
- May enhance acidity
Mousy Taint

- Rare… but very, very noticeable
- Perception pH dependant
- Threshold varies by 2 orders of magnitude

Cause
- *Brettanomyces*
- LAB
- Several compounds cause aroma

Prevention
- Fast, complete ML
- Keep pH low
- Early SO_2 or Lysosyme

Correction
- None
Mousy Taint

- **Aroma:**
 - Often, none

- **Palate:**
 - Mouse cage
 - Mouse urine
 - Corn chip
 - Popcorn

- **Trigeminal:**
 - Furry or cottonty sensation in back of throat
Summary

- The big three:
 - Winery sanitation
 - SO$_2$ management
 - Limiting oxygen exposure

- Taste wine throughout production processes
- Know your sensitivities and anosmias
Acknowledgements

- Chris Gerling and Anna Katherine Mansfield, Dept. of Food Science, Cornell University

Resources:

“Wine faults are like grammar errors-designated by general consensus of groups of experts.” -R. Jackson